Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(9): e0255148, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34492026

RESUMEN

The widespread use of facemasks throughout the population is recommended by the WHO to reduce transmission of the SARS-CoV-2 virus. As some regions of the world are facing mask shortages, reuse may be necessary. However, used masks are considered as a potential hazard that may spread and transmit disease if they are not decontaminated correctly and systematically before reuse. As a result, the inappropriate decontamination practices that are commonly witnessed in the general public are challenging management of the epidemic at a large scale. To achieve public acceptance and implementation, decontamination procedures need to be low-cost and simple. We propose the use of hot hygroscopic materials to decontaminate non-medical facemasks in household settings. We report on the inactivation of a viral load on a facial mask exposed to hot hygroscopic materials for 15 minutes. As opposed to recent academic studies whereby decontamination is achieved by maintaining heat and humidity above a given value, a more flexible procedure is proposed here using a slow decaying pattern, which is both effective and easier to implement, suggesting straightforward public deployment and hence reliable implementation by the population.


Asunto(s)
Descontaminación/métodos , Equipo Reutilizado/normas , Máscaras/virología , COVID-19/prevención & control , Calor , Humanos , Humedad , SARS-CoV-2
2.
Environ Sci Pollut Res Int ; 28(39): 55003-55013, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34125382

RESUMEN

Environmental and ecological issues have led to the development of new sustainable channels for the recovery of dredged sediments. One of the major difficulties of sediment valorization lies in particular in its very heterogeneous composition. For example, the presences of heavy metals and organic matter have a significant influence on the environmental impact of materials formulated with sediment. Some heavy metals such as antimony, mercury, lead, and cadmium in high concentrations are dangerous to the body. Trace metals trapped in sediments are transformed through complex biogeochemical processes. They subsequently associate with organic matter to form clay-humic groups that define the degree of sediment pollution. The Harbour Dredging Sediments (HDSs) used were classified as non-hazardous waste in accordance with Directive 12/12/14/EC. The purpose of this study is to evaluate the environmental impact of the use of HDS from active lagoon in the formulation of self-compacting concrete (SCC) with the objective of incorporating a high sediment content, obtaining materials with a low environmental impact and ensuring compressive strength of a C25/30 class concrete. Three HDSs are being studied that have a significant impact their difference by their fines content at 125 µm. Sediments recovered from the active lagooning process have not undergone any physical, chemical, or thermal treatment. The DMDA (Densified Mixture Design Algorithm) method is used to optimize the composition of "sediment" SSCs. The communication focuses on mortars equivalent to these "sediment" SCCs (SCMs). Sediment represents about 20% of the granular composition with a sediment-to-cement ratio of 80%. Compressive strengths are greater than 25 MPa and tensile strengths are in the range of 3 to 8 MPa at 28 days of curing. From an environmental point of view, all heavy metals are stabilized except nickel. In particular, there has been a considerable decrease in the levels of sulfate, total organic carbon, and chloride. The different SCMs are classified as inert, clinker hydration produces hydrates that capture and stabilize heavy metals in the cementitious matrix. The results obtained show that HDSs could be used as a secondary raw material in the formulation of self-compacting concretes.


Asunto(s)
Conservación de los Recursos Naturales , Sedimentos Geológicos , Eliminación de Residuos
3.
Waste Manag Res ; 38(8): 868-875, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32419672

RESUMEN

Municipal solid waste incineration generates large quantities of bottom ash that should be recycled. Current use of municipal solid waste incineration bottom ash (MSWI-BA) in cementitious materials is mostly in Ordinary Portland Cement (OPC). This paper considers using MSWI-BA as sand substitution in Calcium Sulfoaluminate Cement (CSA) as an alternative to OPC. A comparison between OPC and CSA mortars containing 0-2 mm MSWI-BA is conducted. The MSWI-BA used was treated to remove the ferrous and non-ferrous metals in order to obtain a better mineral fraction. Different percentages (0%, 25%, 50%, 75%, and 100%) of standard sand were substituted by MSWI-BA based on equivalent volume. Experimental results showed that the compressive strength and porosity of the CSA mortars were superior to OPC after substitution at 1, 7, 28, and 90 days. The compressive strength of OPC mortars with 25% substitution decreased by 40% compared to 11% for CSA mortars at 90 days. This is due to the difference in pH between the two cement pastes as OPC in contact with the MSWI-BA leads to a reaction with the aluminum content which releases hydrogen gas, increases the porosity, and decreases the compressive strength.


Asunto(s)
Ceniza del Carbón , Incineración , Calcio , Materiales de Construcción , Reciclaje , Residuos Sólidos/análisis
4.
Soft Matter ; 16(11): 2815-2828, 2020 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-32104829

RESUMEN

In this work, thermoreversible poly(trimethylene carbonate) (PTMC) based networks with different crosslinking densities were obtained by Diels-Alder (DA) reaction between furan-functionalized PTMC precursors and a bismaleimide. Furan-grafted PTMC with various functionalities determined by 1H-NMR analyses were prepared from telechelic PTMC oligomer, glycerol, 4,4'-methylenebis(cyclohexyl isocyanate) (H12MDI) and furfuryl alcohol. The formation of network structures by DA reaction between furan and maleimide groups were proved by Fourier-transform infrared spectroscopy (FT-IR). Although both exo and endo DA adduct forms exist, the thermally more stable exo form dominates. The thermoreversibility of networks was evidenced by FT-IR, solubility, differential scanning calorimetry (DSC) and rheology experiments at different temperatures. By increasing furan functionality or node concentration, denser and stiffer networks could be formed with higher Young's modulus and true stress at break in tensile tests, as well as higher crossover temperature, which indicates a nominal transition from elastic behavior to viscous state. The disruption of networks was found to occur in high temperature ranges from 130 to 160 °C, depending on their crosslinking density.

5.
IEEE Rev Biomed Eng ; 12: 333-351, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-29993840

RESUMEN

Stem-cell-based therapy is a promising approach for the treatment of a myriad of diseases and injuries. However, the low rate of cell survival and the uncontrolled differentiation of the injected stem cells currently remain key challenges in advancing stem cell therapeutics. Hydrogels are biomaterials that are potentially highly effective candidates for scaffold systems for stem cells and other molecular encapsulation approaches to target in vivo delivery. Hydrogel-based strategies can potentially address several current challenges in stem cell therapy. We present a concise overview of the recent advances in applications of hydrogels in stem cell therapies, with a focus particularly on the recent advances in the design and approaches for application of hydrogels in tissue engineering. The capability of hydrogels to either enhance the function of the transplanted stem cells by promoting their controlled differentiation or enhance the recruitment of endogenous adult stem cells to the injury site for repair is also reviewed. Finally, the importance of impacts and the desired relationship between the scaffold system and the encapsulated stem cells are discussed.


Asunto(s)
Materiales Biomiméticos/uso terapéutico , Tratamiento Basado en Trasplante de Células y Tejidos/tendencias , Hidrogeles/uso terapéutico , Dispositivos de Expansión Tisular/tendencias , Humanos , Células Madre , Andamios del Tejido/química
6.
Int J Biol Macromol ; 104(Pt A): 564-575, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28602991

RESUMEN

Currently, there is very strong interest to replace synthetic polymers with biological macromolecules of natural source for applications that interact with humans or the environment. This research describes the development of drug delivery hydrogels from natural polymers, starch, lignin and hemicelluloses by means of reactive extrusion. The hydrogels show a strong swelling ability dependent on pH which may be used to control diffusion rates of water and small molecules in and out of the gel. Also the hydrogels degradation rates were studied in a physiological solution (pH 7.4) for 15days. The results indicated that for all three macromolecules, lower molecular weight and higher level of plasticizer both increase the rate of weight loss of the hydrogels. The degradation was extremely reduced when the polymers were extruded in the presence of a catalyst. Finally the dynamic mechanical analysis revealed that the degradation of the hydrogels induce a significant reduction in the compressive modulus. This study demonstrates the characteristics and potential of natural polymers as a drug release system.


Asunto(s)
Portadores de Fármacos/química , Diseño de Fármacos , Hidrogeles/química , Lignina/química , Polisacáridos/química , Tampones (Química) , Concentración de Iones de Hidrógeno , Almidón/química
7.
ChemSusChem ; 10(2): 305-323, 2017 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-28029233

RESUMEN

Hemicelluloses, due to their hydrophilic nature, may tend to be overlooked as a component in water-resistant product applications. However, their domains of use can be greatly expanded by chemical derivatization. Research in which hydrophobic derivatives of hemicelluloses or combinations of hemicelluloses with hydrophobic materials are used with to prepare films and composites is considered herein. Isolation methods that have been used to separate hemicellulose from biomass are also reviewed. Finally, the most useful pathways to change the hydrophilic character of hemicelluloses to hydrophobic are reviewed. In this way, the water resistance can be increased and applications of targeted water-resistant hemicellulose developed. Several applications of these materials are discussed.


Asunto(s)
Polisacáridos/química , Agua/química , Interacciones Hidrofóbicas e Hidrofílicas , Polisacáridos/aislamiento & purificación
8.
Waste Manag ; 29(4): 1320-9, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18977129

RESUMEN

Municipal solid waste incineration (MSWI) bottom ash is an atypical granular material because it may include industrial by-products that result from the incineration of domestic waste. The prospects for the beneficial use of this particular material mainly lie in the field of road construction, as a substitute for the traditional natural aggregates. However, its mechanical properties are still little known, particularly in term of stiffness and deformability, characteristics that are essential to the construction of a durable roadway. The purpose of this paper is to describe better the mechanical behaviour of this recycled material. In order to reach this objective, a large experimental campaign is presented. The first part of this paper presents and comments in detail on the results obtained from static monotonic tests. Oedometric and triaxial shear tests were performed on MSWI bottom ash both before and after treatment with a specific hydraulic binder. These tests allow specification of the mechanical characteristics of the MSWI bottom ash, such as the initial Young's modulus, Poisson's ratio, the compressibility index, the friction angle, and the contracting or dilating behaviour of the material. The results reveal a mechanical behaviour similar to that of initially dense standard materials (sands, unbound granular materials) and a dependence on the applied average pressure, characteristic of the mechanical behaviour of granular media. More laboratory data on other samples of MSWI bottom ash are required to ensure that this comparison is statistically valid.


Asunto(s)
Fuerza Compresiva , Materiales de Construcción , Residuos/análisis , Conservación de los Recursos Naturales/métodos , Incineración , Residuos Industriales , Eliminación de Residuos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...